Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(1): e0011033, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36689414

RESUMO

Harris County, TX, is the third most populous county in the USA and upon detection of arboviruses Harris County Public Health applies insecticides (e.g., pyrethroid-based Permanone 31-66) against adults of Culex quinquefasciatus to prevent disease transmission. Populations of Aedes aegypti, while not yet a target of public health control, are likely affected by pyrethroid exposure. As this species is a vector of emerging arboviruses, its resistance status to Permanone and the kdr mutations in the voltage-gated sodium channel (VGSC) associated with pyrethroid resistance were investigated. We examined females of known genotype at the V1016I and F1534C sites (N = 716) for their genotype at the 410 amino acid position in the VGSC, and for the influence of their kdr genotype on survival to Permanone at three different distances from the insecticide source in field tests. Most females (81.8%) had at least one resistant L allele at the 410 position, being the first report of the V410L mutation in Ae. aegypti for Texas. When only genotypes at the 410 position were analyzed, the LL genotype exhibited higher survivorship than VL or VV. Out of 27 possible tri-locus kdr genotypes only 23 were found. Analyses of the probability of survival of tri-locus genotypes and for the V410L genotype using a multivariate logistic regression model including area, distance, and genotype found significant interactions between distance and genotype. When only the most common tri-locus genotypes were analyzed (LL/II/CC, 48.2%; VL/II/CC, 19.1%; and VV/II/CC, 10.1%) genotype had no effect on survival, but significant interactions of distance and genotype were found. This indicated that the V410L kdr allele increased survival probability at certain distances. Genotypes did not differ in survivorship at 7.62-m, but LL/II/CC had higher survivorship than VL/II/CC at 15.24- and 22.86-m. The model also identified differences in survivorship among the operational areas investigated.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Feminino , Aedes/genética , Texas , Inseticidas/farmacologia , Permetrina/metabolismo , Mutação , Genótipo , Canais de Sódio Disparados por Voltagem/genética , Resistência a Inseticidas/genética , Mosquitos Vetores/genética
2.
Indoor Air ; 32(8): e13090, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040288

RESUMO

Permethrin is one of the most widely used active ingredients in spray-type home insecticides. However, indoor permethrin exposure resulting from the use of home insecticides is not well-characterized, as measured permethrin concentrations in indoor environmental and biological media with a known application rate are scarce. We conducted an intervention study with four participants for seven days. We conducted personal air monitoring and collected 24-h urine samples in which we quantified time-weighted average (TWA) permethrin concentrations in indoor air (Cair ) and urinary concentrations of two permethrin metabolites, 3-phenoxybenzoic acid (3-PBA) and cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis/trans-DCCA). We also estimated (1) TWA Cair using a simple indoor air model and (2) urinary excreted (UE) mass using a simple excretion model with both estimated and measured TWA Cair . Measurements of TWA Cair from personal air monitoring were lower than those estimated from the indoor model by a factor of 2.9 to 49.4. The ratio of estimated to measured UE mass ranged 3.5-18.2 when using estimated TWA Cair and 1.1-2.9 when using measured TWA Cair . Smaller ratios in estimating internal permethrin exposure from personal air monitoring suggest that personal air monitoring could reduce uncertainties in permethrin exposure assessment resulting from the use of spray-type insecticides.


Assuntos
Poluição do Ar em Ambientes Fechados , Inseticidas , Piretrinas , Biomarcadores , Monitoramento Ambiental , Humanos , Inseticidas/metabolismo , Permetrina/metabolismo , Piretrinas/metabolismo
3.
Mol Ecol ; 31(13): 3642-3657, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35546741

RESUMO

Metabolic resistance to pyrethroids is a menace to the continued effectiveness of malaria vector controls. Its molecular basis is complex and varies geographically across Africa. Here, we used a multi-omics approach, followed-up with functional validation to show that a directionally selected haplotype of a cytochrome P450, CYP9K1 is a major driver of resistance in Anopheles funestus. A PoolSeq GWAS using mosquitoes alive and dead after permethrin exposure, from Malawi and Cameroon, detected candidate genomic regions, but lacked consistency across replicates. Targeted sequencing of candidate resistance genes detected several SNPs associated with known pyrethroid resistance QTLs. The most significant SNPs were in the cytochrome P450 CYP304B1 (Cameroon), CYP315A1 (Uganda) and the ABC transporter gene ABCG4 (Malawi). However, when comparing field resistant mosquitoes to laboratory susceptible, the pyrethroid resistance locus rp1 and SNPs around the ABC transporter ABCG4 were consistently significant, except for Uganda where SNPs in the P450 CYP9K1 was markedly significant. In vitro heterologous metabolism assays with recombinant CYP9K1 revealed that it metabolises type II pyrethroid (deltamethrin; 64% depletion) but not type I (permethrin; 0%), while moderately metabolising DDT (17%). CYP9K1 exhibited reduced genetic diversity in Uganda underlying an extensive selective sweep. Furthermore, a glycine to alanine (G454A) amino acid change in CYP9K1 was fixed in Ugandan mosquitoes but not in other An. funestus populations. This study sheds further light on the evolution of metabolic resistance in a major malaria vector by implicating more genes and variants that can be used to design field-applicable markers to better track resistance Africa-wide.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Haplótipos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/genética , Mosquitos Vetores/genética , Permetrina/metabolismo , Permetrina/farmacologia , Piretrinas/farmacologia , Uganda
4.
Colloids Surf B Biointerfaces ; 216: 112565, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35588686

RESUMO

Pyrethroid insecticides are a group of widely used bio-mimetic synthetic pesticides. However, recent studies reported that they could have an accumulation effect in human which may cause series of health problems. Estrogen receptors (ER) are a class of nuclear receptors that are vital in proper physiological behavior of estrogens. To investigate the reproductive toxicity of pyrethroids, homology modeling, molecular docking, molecular dynamic simulations (MDs) were conducted to explore the interaction between pyrethroids and ERα from atomic scale. The human ERα (2YJA) was selected as a template protein for homology modeling. Then eight typical pyrethroids and positive control estradiol were docked to the modeled protein. The highest scoring bifenthrin and the lowest scoring permethrin were chosen for in-depth analysis. MDs showed that the complex formed by permethrin with ERα had a lower RMSD value and binding free energies compared to bifenthrin. Based on these results from microscopic dimension, exposure experiments were implemented to validate the primary conclusions. VTG concentrations in male zebrafish's blood were significantly higher under permethrin exposure than bifenthrin, suggesting a stronger estrogenic activity and binding propensity. In this regard, the structural characteristics of molecules were analyzed, expecting to provide theoretical references for subsequent drug design and rational drug application.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Animais , Receptor alfa de Estrogênio/metabolismo , Inseticidas/farmacologia , Masculino , Simulação de Acoplamento Molecular , Permetrina/metabolismo , Piretrinas/toxicidade , Peixe-Zebra/metabolismo
5.
Chemosphere ; 299: 134393, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35337826

RESUMO

Recent studies demonstrated pyrethroid resistance associated with voltage-gated sodium channel mutations in populations of the epibenthic amphipod, Hyalella azteca. Resistant populations were able to tolerate and bioconcentrate pyrethroids at concentrations significantly higher than toxic levels for non-resistant populations. In conjunction with elevated bioconcentration potential, environmental alteration particularly as a result of global climate change is anticipated to significantly alter abiotic parameters including temperature and salinity. These changes are expected to influence uptake and biotransformation of contaminants. Thus, the aims of the current study were a) to examine the bioconcentration potential of permethrin in two pyrethroid-resistant clades of H. azteca and b) assess the influence of temperature and salinity changes on toxicokinetic parameters. Two pyrethroid-resistant clades of H. azteca were exposed to 14C-permethrin at three salinities (0.2, 1.0 and 6.0 practical salinity units (PSU)) and temperatures (18, 23 and 28 °C). Tests were conducted for up to 36 h and uptake, elimination and biotransformation rates were calculated. Both populations demonstrated bioconcentration factors (BCFs) between five and seven times greater than published data for non-resistant H. azteca, with significant differences between clades. Calculated BCF values were comparable to field populations of resistant H. azteca, emphasizing the potential for elevated pyrethroid bioconcentration in the natural environment and increased exposure for predators consuming pyrethroid-resistant aquatic invertebrates. Alterations to temperature and salinity had no statistically significant effect on uptake or parent compound half-life in either population, though biotransformation was elevated at higher temperatures in both populations. Salinity had a variable effect between the two populations, with lower BCF values at 1.0 PSU in clade D H. azteca and greater BCFs at 6.0 PSU in clade C H. azteca. This is the first study to demonstrate the potential for future climate scenarios to influence toxicokinetics in pyrethroid-resistant aquatic organisms.


Assuntos
Anfípodes , Inseticidas , Piretrinas , Poluentes Químicos da Água , Animais , Bioacumulação , Inseticidas/análise , Permetrina/metabolismo , Permetrina/toxicidade , Piretrinas/metabolismo , Salinidade , Temperatura , Toxicocinética , Poluentes Químicos da Água/análise
6.
PLoS Genet ; 17(6): e1009606, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138859

RESUMO

Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site-the voltage-gated sodium channel (VGSC)-and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.


Assuntos
Aedes/efeitos dos fármacos , Inativação Metabólica/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Permetrina/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Aedes/genética , Aedes/metabolismo , Substituição de Aminoácidos , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Anotação de Sequência Molecular , Mosquitos Vetores , Mutação , Permetrina/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Canais de Sódio Disparados por Voltagem/metabolismo
7.
Food Chem Toxicol ; 152: 112155, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33775782

RESUMO

Several studies have reported a correlation between pesticides exposure and metabolic disorders. Dichlorodiphenyltrichloroethane (DDT) and permethrin (PMT), two pesticides highly prevalent in the environment, have been associated to dysregulation of liver lipids and glucose metabolisms and non-alcoholic fatty liver disease (NAFLD). However, the effects of DDT/PMT mixtures and mechanisms mediating their action remain unclear. Here, we used multi-omic to investigate the liver damage induced by DDT, PMT and their mixture in rat liver organ-on-chip. Organ-on-chip allow the reproduction of in vivo-like micro-environment. Two concentrations, 15 and 150 µM, were used to expose the hepatocytes for 24 h under perfusion. The transcriptome and metabolome analysis suggested a dose-dependent effect for all conditions, with a profile close to control for pesticides low-doses. The comparison between control and high-doses detected 266/24, 256/24 and 1349/30 genes/metabolites differentially expressed for DDT150, PMT150 and Mix150 (DDT150/PMT150). Transcriptome modulation reflected liver inflammation, steatosis, necrosis, PPAR signaling and fatty acid metabolism. The metabolome analysis highlighted common signature of three treatments including lipid and carbohydrates production, and a decrease in amino acids and krebs cycle intermediates. Our study illustrates the potential of organ-on-chip coupled to multi-omics for toxicological studies and provides new tools for chemical risk assessment.


Assuntos
DDT/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/efeitos dos fármacos , Permetrina/metabolismo , Praguicidas/metabolismo , Animais , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fígado Gorduroso/induzido quimicamente , Hepatócitos/metabolismo , Dispositivos Lab-On-A-Chip , Fígado/citologia , Masculino , Metaboloma/efeitos dos fármacos , Metabolômica/instrumentação , Metabolômica/métodos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
8.
Xenobiotica ; 51(1): 40-50, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32757971

RESUMO

The kinetics of metabolism of deltamethrin (DLM) and cis- and trans-permethrin (CPM and TPM) was studied in male Sprague-Dawley rat and human liver microsomes. DLM metabolism kinetics was also studied in isolated rat hepatocytes, liver microsomes and cytosol. Apparent intrinsic clearance (CLint) values for the metabolism of DLM, CPM and TPM by cytochrome P450 (CYP) and carboxylesterase (CES) enzymes in rat and human liver microsomes decreased with increasing microsomal protein concentration. However, when apparent CLint values were corrected for nonspecific binding to allow calculation of unbound (i.e., corrected) CLint values, the unbound values did not vary greatly with microsomal protein concentration. Unbound CLint values for metabolism of 0.05-1 µM DLM in rat liver microsomes (CYP and CES enzymes) and cytosol (CES enzymes) were not significantly different from rates of DLM metabolism in isolated rat hepatocytes. This study demonstrates that the nonspecific binding of these highly lipophilic compounds needs to be taken into account in order to obtain accurate estimates of rates of in vitro metabolism of these pyrethroids. While DLM is rapidly metabolised in vitro, the hepatocyte membrane does not appear to represent a barrier to the absorption and hence subsequent hepatic metabolism of this pyrethroid.


Assuntos
Citosol/metabolismo , Fígado/metabolismo , Permetrina/metabolismo , Animais , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Humanos , Cinética , Masculino , Microssomos Hepáticos/metabolismo , Nitrilas/metabolismo , Piretrinas/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Brain Behav Immun ; 81: 545-559, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325531

RESUMO

Gulf War Illness (GWI), affecting 30% of veterans from the 1991 Gulf War (GW), is a multi-symptom illness with features similar to those of patients with autoimmune diseases. The objective of the current work is to determine if exposure to GW-related pesticides, such as permethrin (PER), activates peripheral and central nervous system (CNS) adaptive immune responses. In the current study, we focused on a PER metabolite, 3-phenoxybenzoic acid (3-PBA), as this is a common metabolite previously shown to form adducts with endogenous proteins. We observed the presence of 3-PBA and 3-PBA modified lysine of protein peptides in the brain, blood and liver of pyridostigmine bromide (PB) and  PER (PB+PER) exposed mice at acute and chronic post-exposure timepoints. We tested whether 3-PBA-haptenated albumin (3-PBA-albumin) can activate immune cells since it is known that chemically haptenated proteins can stimulate immune responses. We detected autoantibodies against 3-PBA-albumin in plasma from PB + PER exposed mice and veterans with GWI at chronic post-exposure timepoints. We also observed that in vitro treatment of blood with 3-PBA-albumin resulted in the activation of B- and T-helper lymphocytes and that these immune cells were also increased in blood of PB + PER exposed mice and veterans with GWI. These immune changes corresponded with elevated levels of infiltrating monocytes in the brain and blood of PB + PER exposed mice which coincided with alterations in the markers of blood-brain barrier disruption, brain macrophages and neuroinflammation. These studies suggest that pesticide exposure associated with GWI may have resulted in the activation of the peripheral and CNS adaptive immune responses, possibly contributing to an autoimmune-type phenotype in veterans with GWI.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Permetrina/efeitos adversos , Síndrome do Golfo Pérsico/metabolismo , Adulto , Animais , Benzoatos/análise , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Guerra do Golfo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Permetrina/metabolismo , Síndrome do Golfo Pérsico/fisiopatologia , Brometo de Piridostigmina/efeitos adversos , Brometo de Piridostigmina/metabolismo , Veteranos
10.
Xenobiotica ; 49(4): 388-396, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29537356

RESUMO

The metabolism of deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in liver microsomes, liver cytosol and plasma from male Sprague-Dawley rats aged 15, 21 and 90 days and from adult humans. DLM and CPM were metabolised by rat hepatic microsomal cytochrome P450 (CYP) enzymes and to a lesser extent by microsomal and cytosolic carboxylesterase (CES) enzymes, whereas TPM was metabolised to a greater extent by CES enzymes. In human liver, DLM and TPM were mainly metabolised by CES enzymes, whereas CPM was metabolised by CYP and CES enzymes. The metabolism of pyrethroids by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds. DLM, CPM and TPM were metabolised by rat, but not human, plasma CES enzymes. This study demonstrates that the ability of male rats to metabolise DLM, CPM and TPM by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90 day old rats. As pyrethroid-induced neurotoxicity is due to the parent compound, these results suggest that DLM, CPM and TPM may be more neurotoxic to juvenile than to adult rats.


Assuntos
Citosol/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Nitrilas/metabolismo , Permetrina/metabolismo , Plasma/metabolismo , Piretrinas/metabolismo , Animais , Humanos , Cinética , Masculino , Ratos Sprague-Dawley
11.
PLoS Negl Trop Dis ; 12(11): e0006933, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30452436

RESUMO

Aedes aegypti poses a serious risk to human health due to its wide global distribution, high vector competence for several arboviruses, frequent human biting, and ability to thrive in urban environments. Pyrethroid insecticides remain the primary means of controlling adult A. aegypti populations during disease outbreaks. As a result of decades of use, pyrethroid resistance is a global problem. Cytochrome P450 monooxygenase (CYP)-mediated detoxification is one of the primary mechanisms of pyrethroid resistance. However, the specific CYP(s) responsible for resistance have not been unequivocally determined. We introgressed the resistance alleles from the resistant A. aegypti strain, Singapore (SP), into the genetic background of the susceptible ROCK strain. The resulting strain (CKR) was congenic to ROCK. Our primary goal was to determine which CYPs in SP are linked to resistance. To do this, we first determined which CYPs overexpressed in SP are also overexpressed in CKR, with the assumption that only the CYPs linked to resistance will be overexpressed in CKR relative to ROCK. Next, we determined whether any of the overexpressed CYPs were genetically linked to resistance (cis-regulated) or not (trans-regulated). We found that CYP6BB2, CYP6Z8, CYP9M5 and CYP9M6 were overexpressed in SP as well as in CKR. Based on the genomic sequences and polymorphisms of five single copy CYPs (CYP4C50, 6BB2, 6F2, 6F3 and 6Z8) in each strain, none of these genes were linked to resistance, except for CYP6BB2, which was partially linked to the resistance locus. Hence, overexpression of these four CYPs is due to a trans-regulatory factor(s). Knowledge on the specific CYPs and their regulators involved in resistance is critical for resistance management strategies because it aids in the development of new control chemicals, provides information on potential environmental modulators of resistance, and allows for the detection of resistance markers before resistance becomes fixed in the population.


Assuntos
Aedes/efeitos dos fármacos , Aedes/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/toxicidade , Permetrina/toxicidade , Aedes/genética , Alelos , Animais , Sistema Enzimático do Citocromo P-450/genética , Feminino , Proteínas de Insetos/genética , Inseticidas/metabolismo , Masculino , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Mosquitos Vetores/genética , Permetrina/metabolismo , Polimorfismo de Nucleotídeo Único , Singapura
12.
Chemosphere ; 185: 1173-1180, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28772355

RESUMO

Synthetic pyrethroids (SPs) are one of the most widely used pesticides and frequently detected in the aquatic environment. Previous studies have shown that SPs posed high aquatic toxicity, but information on the developmental toxicity and endocrine disruption on zebrafish (Danio rerio) at environmentally relevant concentrations is limited. In this study, zebrafish embryos were employed to examine the adverse effects of λ-cyhalothrin (LCT), fenvalerate (FEN), and permethrin (PM) at 2.5, 10, 25, 125, 500 nM for 96 h. The results showed these 3 SPs caused dose-dependent mortality, malformation rate, and hatching rate. Thyroid hormone triiodothyronine (T3) levels were significantly decreased after exposure to LCT and FEN. Quantitative real-time PCR analysis was then performed on a series of nuclear receptors (NRs) genes involved in the hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-adrenocortical (HPA) axes, and oxidative-stress-related system. Our results showed that LCT, FEN, and PM downregulated AR expression while upregulated ER1 expression, and caused alteration to ER2a and ER2b expression. As for the expression of TRα and TRß, they were both decreased following exposure to the 3 SPs. LCT and PM downregulated the MR expression and FEN induced MR expression. In addition, the expression of GR was increased after treating with LCT, while it was suppressed after exposure to FEN and PM. The 3 SPs also caused various alterations to the expression of genes including AhRs, PPARα, and PXR. These findings suggest that these 3 SPs may cause developmental toxicity to zebrafish larvae by disrupting endocrine signaling at environmentally relevant concentrations.


Assuntos
Disruptores Endócrinos/toxicidade , Inseticidas/toxicidade , Nitrilas/toxicidade , Permetrina/toxicidade , Piretrinas/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Sistema Endócrino/efeitos dos fármacos , Hipotálamo/metabolismo , Larva/efeitos dos fármacos , Permetrina/metabolismo , Hipófise/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo , Peixe-Zebra/metabolismo
13.
Environ Pollut ; 225: 346-353, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28283410

RESUMO

Pyrethroid pesticides were analysed in liver of striped dolphin (Stenella coeruleoalba) from the Alboran Sea (south of Spain, Mediterranean Sea). The occurrence and bioaccumulation of pyrethroid insecticides in marine mammal tissues from the northern hemisphere had never been determined before. Pyrethroids were detected in 87% of the specimens with a mean total concentration of 300 ng g-1 lw ±â€Š932 (range 2.7-5200 ng g-1 lw). Permethrin and tetramethrin were the main contributors to the pyrethroid profiles, with enantiospecific accumulation for the first and isomer specific accumulation for the latter. Bioaccumulation of pyrethroids was unlike that of persistent organic pollutants (POPs), as pyrethroid concentrations were not correlated to the maturity stage of the specimens. Concentrations slightly increased from calves to juveniles, whereas juveniles presented similar concentrations to adults. Metabolization of pyrethroids after achieving sexual maturity might account for this pattern.


Assuntos
Monitoramento Ambiental , Inseticidas/metabolismo , Fígado/metabolismo , Piretrinas/metabolismo , Stenella/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Inseticidas/análise , Fígado/química , Mar Mediterrâneo , Permetrina/metabolismo , Piretrinas/análise , Espanha , Poluentes Químicos da Água/análise
14.
Neuroscience ; 340: 411-423, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27826104

RESUMO

The present work was designed to study the mechanisms associated with Nurr1 modulation following early life permethrin (PERM) treatment during rat's life span. Here we demonstrate that PERM exposure in rats, at a dose close to No Observed Adverse Effect Level (NOAEL) for 15days during neonatal brain development leads to its accumulation long after exposure. In striatum from adolescent rats we detected an increase in DNA methyltransferases (DNMTs) such as DNMT1, DNMT3a, Tyrosine hydroxylase, monomeric and aggregated α-synuclein protein levels. Adult rats showed enhanced DNMT3b and α-synuclein aggregation compared to the control group, while with aging a significant decrease in all biomarkers studied was observed. No changes in Nurr1 promoter methylation in adolescent, adult and old rats were found. In silico studies showed clear evidence of a strong binding interaction between PERM and its metabolite 3-phenoxybenzoic acid with the nuclear orphan receptor Nurr1. These findings suggest that an additional interference with the dopaminergic neuron pathway could occur in situ during PERM accumulation in brain. Therefore, Nurr1 modulation in early life PERM-treated rats, depends on age-related adaptive responses in animals.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/diagnóstico por imagem , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Permetrina/toxicidade , Envelhecimento/metabolismo , Animais , Benzoatos/química , Benzoatos/metabolismo , Sítios de Ligação , Corpo Estriado/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Permetrina/química , Permetrina/metabolismo , Regiões Promotoras Genéticas , Multimerização Proteica , Ratos Wistar , alfa-Sinucleína/metabolismo
15.
Environ Pollut ; 220(Pt A): 375-382, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27756597

RESUMO

The recent discovery of pyrethroid-resistant Hyalella azteca populations in California, USA suggests there has been significant exposure of aquatic organisms to these terrestrially-applied insecticides. Since resistant organisms are able to survive in relatively contaminated habitats they may experience greater pyrethroid bioaccumulation, subsequently increasing the risk of those compounds transferring to predators. These issues were evaluated in the current study following toxicity tests in water with permethrin which showed the 96-h LC50 of resistant H. azteca (1670 ng L-1) was 53 times higher than that of non-resistant H. azteca (31.2 ng L-1). Bioaccumulation was compared between resistant and non-resistant H. azteca by exposing both populations to permethrin in water and then measuring the tissue concentrations attained. Our results indicate that resistant and non-resistant H. azteca have similar potential to bioaccumulate pyrethroids at the same exposure concentration. However, significantly greater bioaccumulation occurs in resistant H. azteca at exposure concentrations non-resistant organisms cannot survive. To assess the risk of pyrethroid trophic transfer, permethrin-dosed resistant H. azteca were fed to fathead minnows (Pimephales promelas) for four days, after which bioaccumulation of permethrin and its biotransformation products in fish tissues were measured. There were detectable concentrations of permethrin in fish tissues after they consumed dosed resistant H. azteca. These results show that bioaccumulation potential is greater in organisms with pyrethroid resistance and this increases the risk of trophic transfer when consumed by a predator. The implications of this study extend to individual fitness, populations and food webs.


Assuntos
Anfípodes/metabolismo , Cyprinidae/metabolismo , Inseticidas/metabolismo , Permetrina/metabolismo , Poluentes Químicos da Água/metabolismo , Anfípodes/efeitos dos fármacos , Animais , California , Cadeia Alimentar , Resistência a Inseticidas , Inseticidas/análise , Inseticidas/toxicidade , Permetrina/análise , Permetrina/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Environ Res ; 149: 86-104, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27183507

RESUMO

Permethrin (PER), the most frequently used synthetic Type I pyrethroid insecticide, is widely used in the world because of its high activity as an insecticide and its low mammalian toxicity. It was originally believed that PER exhibited low toxicity on untargeted animals. However, as its use became more extensive worldwide, increasing evidence suggested that PER might have a variety of toxic effects on animals and humans alike, such as neurotoxicity, immunotoxicity, cardiotoxicity, hepatotoxicity, reproductive, genotoxic, and haematotoxic effects, digestive system toxicity, and cytotoxicity. A growing number of studies indicate that oxidative stress played critical roles in the various toxicities associated with PER. To date, almost no review has addressed the toxicity of PER correlated with oxidative stress. The focus of this article is primarily to summarise advances in the research associated with oxidative stress as a potential mechanism for PER-induced toxicity as well as its metabolism. This review summarises the research conducted over the past decade into the reactive oxygen species (ROS) generation and oxidative stress as a consequence of PER treatments, and ultimately their correlation with the toxicity and the metabolism of PER. The metabolism of PER involves various CYP450 enzymes, alcohol or aldehyde dehydrogenases for oxidation and the carboxylesterases for hydrolysis, through which oxidative stress might occur, and such metabolic factors are also reviewed. The protection of a variety of antioxidants against PER-induced toxicity is also discussed, in order to further understand the role of oxidative stress in PER-induced toxicity. This review will throw new light on the critical roles of oxidative stress in PER-induced toxicity, as well as on the blind spots that still exist in the understanding of PER metabolism, the cellular effects in terms of apoptosis and cell signaling pathways, and finally strategies to help to protect against its oxidative damage.


Assuntos
Exposição Ambiental , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Permetrina/metabolismo , Permetrina/toxicidade , Inseticidas/metabolismo , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
17.
PLoS One ; 11(3): e0149738, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930058

RESUMO

BACKGROUND: Mosquito strains that exhibit increased tolerance to the chemical class of compounds with a sodium channel modulator mode of action (pyrethroids and pyrethrins) are typically described as "pyrethroid resistant". Resistance to pyrethroids is an increasingly important challenge in the control of mosquito-borne diseases, such as malaria or dengue, because one of the main interventions (the distribution of large numbers of long-lasting insecticide-treated bed nets) currently relies entirely on long-lasting pyrethroids. Increasing tolerance of target insects against this class of insecticides lowers their impact in vector control. The current study suggests that the level of metabolic resistance depends on the structure of the molecule and that structurally different compounds may still be effective because detoxifying enzymes are unable to bind to these uncommon structures. METHODS: Treated surface contact bioassays were performed on susceptible Aedes aegypti, East African knockdown resistance (kdr) Anopheles gambiae (strain RSP-H) and metabolically resistant Anopheles funestus (strain FUMOZ-R) with different pyrethroids, such as cypermethrin, ß-cyfluthrin, deltamethrin, permethrin and transfluthrin (alone and in combination with the synergist piperonyl butoxide). The nonfluorinated form of transfluthrin was also assessed as a single agent and in combination with piperonyl butoxide. RESULTS: Although the dosages for pyrethroids containing a phenoxybenzyl moiety have exhibited differences in terms of effectiveness among the three tested mosquito species, the structurally different transfluthrin with a polyfluorobenzyl moiety remained active in mosquitoes with upregulated P450 levels. In trials with transfluthrin mixed with piperonyl butoxide, the added synergist exhibited no efficacy-enhancing effect. CONCLUSION: The results of this study suggest that transfluthrin has the potential to control P450-mediated metabolically resistant mosquitoes because the structural formula of transfluthrin differs from that of the tested pyrethroids, which are used in vector control. The P450-detoxifying enzymes of the Anopheles funestus FUMOZ-R mosquitoes seem to bind preferably at the phenoxybenzyl moiety and appear to be unable to degrade transfluthrin with its tetrafluorobenzyl moiety. Inhibition of the class of monooxygenases by piperonyl butoxide revealed no increase of efficacy of the pure transfluthrin compound, which also indicates that the P450 enzymes potentially do not impact the efficacy of transfluthrin.


Assuntos
Bioensaio/métodos , Resistência a Inseticidas/efeitos dos fármacos , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Aedes/crescimento & desenvolvimento , Aedes/metabolismo , Animais , Anopheles/crescimento & desenvolvimento , Anopheles/metabolismo , Sítios de Ligação , Ciclopropanos/química , Ciclopropanos/metabolismo , Ciclopropanos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Fluorbenzenos/química , Fluorbenzenos/metabolismo , Fluorbenzenos/farmacologia , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacologia , Estrutura Molecular , Nitrilas/química , Nitrilas/metabolismo , Nitrilas/farmacologia , Permetrina/química , Permetrina/metabolismo , Permetrina/farmacologia , Piretrinas/química , Piretrinas/metabolismo , Reprodutibilidade dos Testes
18.
Toxicol Appl Pharmacol ; 294: 65-77, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26802525

RESUMO

Permethrin, a pyrethroid insecticide, is suspected to induce neuronal and hormonal disturbances in humans. The widespread exposure of the populations has been confirmed by the detection of the urinary metabolites of permethrin in biomonitoring studies. Permethrin is a chiral molecule presenting two forms, the cis and the trans isomers. Because in vitro studies indicated a metabolic interaction between the trans and cis isomers of permethrin, we adapted and calibrated a PBPK model for trans- and cis-permethrin separately in rats. The model also describes the toxicokinetics of three urinary metabolites, cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- and trans-DCCA), 3-phenoxybenzoic acid (3-PBA) and 4'OH-phenoxybenzoic acid (4'-OH-PBA). In vivo experiments performed in Sprague-Dawley rats were used to calibrate the PBPK model in a Bayesian framework. The model captured well the toxicokinetics of permethrin isomers and their metabolites including the rapid absorption, the accumulation in fat, the extensive metabolism of the parent compounds, and the rapid elimination of metabolites in urine. Average hepatic clearances in rats were estimated to be 2.4 and 5.7 L/h/kg for cis- and trans-permethrin, respectively. High concentrations of the metabolite 4'-OH-PBA were measured in urine compared to cis- and trans-DCCA and 3-PBA. The confidence in the extended PBPK model was then confirmed by good predictions of published experimental data obtained using the isomers mixture. The extended PBPK model could be extrapolated to humans to predict the internal dose of exposure to permethrin from biomonitoring data in urine.


Assuntos
Inseticidas/metabolismo , Inseticidas/farmacocinética , Permetrina/metabolismo , Permetrina/farmacocinética , Tecido Adiposo/metabolismo , Algoritmos , Animais , Área Sob a Curva , Teorema de Bayes , Inseticidas/urina , Fígado/metabolismo , Masculino , Permetrina/urina , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Distribuição Tecidual , Toxicocinética
19.
J Expo Sci Environ Epidemiol ; 26(1): 95-103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25967068

RESUMO

We conducted a randomized case-control trial to analyze uptake of the insecticide/arcaricide permethrin in wearers of permethrin-impregnated and non-impregnated pants in German forestry. Eighty-two male workers were each equipped for a 16-week period with permethrin-treated (test group) or with non-treated work pants (control group). Pants with or without lining to protect against cuts, obtained from two different distributors, were worn in each group. Urinary permethrin metabolite levels were measured by GC-MS/MS before, during and after wearing of the pants. Permethrin uptake was calculated using additional questionnaire data. In the control group, metabolite levels in the range of environmental background exposure (median: ~0.5 µg/l) were measured. Subjects wearing impregnated pants showed consistently significantly higher exposure levels even before the first use of the pants with a maximum after 1 week of wearing the pants (median: ~12.5 µg/l). Significant differences in internal exposure were found depending on which of the distributors the pants came from. Metabolite levels decreased probably due to permethrin losses associated with laundering the pants. Calculated permethrin uptake is below the value corresponding to the WHO-proposed acceptable daily intake. Based on our data, a marginally increased cancer risk compared with the general population cannot be excluded when wearing impregnated pants over a working-lifetime period.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Monitoramento Ambiental , Permetrina/sangue , Permetrina/metabolismo , Roupa de Proteção , Picadas de Carrapatos/prevenção & controle , Adulto , Animais , Estudos de Casos e Controles , Agricultura Florestal , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional , Adulto Jovem
20.
Toxicol In Vitro ; 29(4): 803-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25765475

RESUMO

In vitro metabolism of permethrin, a pyrethroid insecticide, was assessed in primary human hepatocytes. In vitro kinetic experiments were performed to estimate the Michaelis-Menten parameters and the clearances or formation rates of the permethrin isomers (cis- and trans-) and three metabolites, cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- and trans-DCCA) and 3-phenoxybenzoic acid (3-PBA). Non-specific binding and the activity of the enzymes involved in permethrin's metabolism (cytochromes P450 and carboxylesterases) were quantified. Trans-permethrin was cleared more rapidly than cis-permethrin with a 2.6-factor (25.7±0.6 and 10.1±0.3 µL/min/10(6) cells respectively). A 3-factor was observed between the formation rates of DCCA and 3-PBA obtained from trans- and cis-permethrin. For both isomers, the rate of formation of DCCA was higher than the one of 3-PBA. The metabolism of the isomers in mixture was also quantified. The co-incubation of isomers at different ratios showed the low inhibitory potential of cis- and trans-permethrin on each other. The estimates of the clearances and the formation rates in the co-incubation condition did not differ from the estimates obtained with a separate incubation. These metabolic parameters may be integrated in physiologically based pharmacokinetic (PBPK) models to predict the fate of permethrin and metabolites in the human body.


Assuntos
Hepatócitos/metabolismo , Inseticidas/metabolismo , Permetrina/metabolismo , Biotransformação , Criopreservação , Sistema Enzimático do Citocromo P-450/metabolismo , Esterases/metabolismo , Feminino , Humanos , Inseticidas/química , Isomerismo , Masculino , Modelos Estatísticos , Permetrina/química , Cultura Primária de Células , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...